Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Genet ; 55(3): 328-343, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38361185

RESUMO

Transgenic (Tg) animal technology is one of the growing areas in biology. Various Tg technologies, each with its own advantages and disadvantages, are available for generating Tg animals. These include zygote microinjection, electroporation, viral infection, embryonic stem cell or spermatogonial stem cell-mediated production of Tg animals, sperm-mediated gene transfer (SMGT), and testis-mediated gene transfer (TMGT). However, there are currently no comprehensive studies comparing SMGT and TMGT methods, selecting appropriate gene delivery carriers (such as nanoparticles and liposomes), and determining the optimal route for gene delivery (SMGT and TMGT) for producing Tg animal. Here we aim to provide a comprehensive assessment comparing SMGT and TMGT methods, and to introduce the best carriers and gene transfer methods to sperm and testis to generate Tg animals in different species. From 2010 to 2022, 47 studies on SMGT and 25 studies on TMGT have been conducted. Mice and rats were the most commonly used species in SMGT and TMGT. Regarding the SMGT approach, nanoparticles, streptolysin-O, and virus packaging were found to be the best gene transfer methods for generating Tg mice. In the TMGT method, the best gene transfer methods for generating Tg mice and rats were virus packaging, dimethyl sulfoxide, electroporation, and liposome. Our study has shown that the efficiency of producing Tg animals varies depending on the species, gene carrier, and method of gene transfer.


Assuntos
Animais Geneticamente Modificados , Técnicas de Transferência de Genes , Espermatozoides , Testículo , Animais , Masculino , Técnicas de Transferência de Genes/veterinária , Testículo/metabolismo , Animais Geneticamente Modificados/genética , Camundongos , Ratos
2.
Mol Biol Rep ; 51(1): 284, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324178

RESUMO

Exosomes, known as extracellular vehicles (EVs), are found in biological fluids. They have the capability to carry and transfer signaling molecules, such as nucleic acids and proteins, facilitating intercellular communication and regulating the gene expression profile in target cells. EVs have the potential to be used as biomarkers in diagnosis, prognosis and also as feasible therapeutic targets. The available evidence suggests that exosomes play critical roles in the reproductive system, particularly during implantation, which is widely recognized as a crucial step in early pregnancy. A proper molecular dialogue between a high-quality embryo and a receptive endometrium is essential for the establishment of a normal pregnancy. This review focuses on the key role of exosomes originated from various sources, including the embryo, seminal fluid, and uterus fluid, based on the available evidence. It explores their potential applications as a novel approach in assisted reproductive technologies (ART).


Assuntos
Exossomos , Feminino , Gravidez , Humanos , Implantação do Embrião , Comunicação Celular , Embrião de Mamíferos , Endométrio
3.
Int J Exp Pathol ; 103(6): 252-262, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36251541

RESUMO

Aspartame (ASP) is probably the best known artificial sugar substitute that is used widely in food. Many experimental studies have reported the toxicity of long-term administration of ASP in various organ tissues. However, there is little evidence available about the nature and mechanisms of the adverse effects of long-term consumption of ASP on the cardiovascular system. This study was conducted to evaluate the possible effects of ASP on heart tissue. For this study 36 mature male mice were divided into one control group and three groups which received respectively 40 mg/kg, 80 mg/kg and 160 mg/kg ASP orally, for 90 days. ASP at the doses of 80 and 160 mg/kg increased the serum content of malondialdehyde (MDA), but decreased serum nitric oxide (NO), creatine kinase (CK) and CK-MB, as well as blood superoxide dismutase (SOD) levels. Serum level of total anti-oxidant capacity (TAC) in blood was also reduced in serum at the dose of 80 mg/kg. Histochemical staining, including Periodic acid-Schiff, Masson's trichrome and Verhoeff-van Gieson staining, indicated that ASP at doses of 80 and 160 mg/kg reduced glycogen deposition and decreased the number of collagen and elastic fibres in the cardiac tissue. The cardiac expression of pro-apoptotic genes, including P53, Bax, Bcl-2 and Caspase-3, was modulated at the dose of 160 mg/kg. Moreover, transcription of Caspase-3 was up-regulated at the dose of 80 mg/kg. In conclusion, long-term consumption of ASP any higher than the acceptable daily intake (40 mg/kg) appears to act by promoting oxidative stress, has the potential to alter both histopathological and biochemical parameters, and induces P53-dependent apoptosis in cardiac tissue.


Assuntos
Aspartame , Sistema Cardiovascular , Animais , Masculino , Camundongos , Caspase 3/metabolismo , Aspartame/toxicidade , Aspartame/metabolismo , Proteína Supressora de Tumor p53 , Estresse Oxidativo , Apoptose
4.
Sci Rep ; 10(1): 13366, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770114

RESUMO

The focus of the current study was to develop a functional and bioactive scaffold through the combination of 3D polylactic acid (PLA)/polycaprolactone (PCL) with gelatin nanofibers (GNFs) and Taurine (Tau) for bone defect regeneration. GNFs were fabricated via electrospinning dispersed in PLA/PCL polymer solution, Tau with different concentrations was added, and the polymer solution converted into a 3D and porous scaffold via the thermally-induced phase separation technique. The characterization results showed that the scaffolds have interconnected pores with the porosity of up to 90%. Moreover, Tau increased the wettability and weight loss rate, while compromised the compressive strengths. The scaffolds were hemo- and cytocompatible and supported cell viability and proliferation. The in vivo studies showed that the defects treated with scaffolds filled with new bone. The computed tomography (CT) imaging and histopathological observation revealed that the PLA/PCL/Gel/Tau 10% provided the highest new bone formation, angiogenesis, and woven bone among the treatment groups. Our finding illustrated that the fabricated scaffold was able to regenerate bone within the defect and can be considered as the effective scaffold for bone tissue engineering application.


Assuntos
Implantes Absorvíveis , Regeneração Óssea , Gelatina , Nanofibras , Poliésteres , Taurina , Alicerces Teciduais , Animais , Materiais Biocompatíveis , Masculino , Teste de Materiais , Ratos , Ratos Wistar , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...